STABILITY ANALYSIS OF THE AXISYMMETRIC
MOTION OF A GAS
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We consider the problem of the stability of the compression and expansion of an axisymmetrical gas with
a spatially constant density. The analogous problem for the spherically symmetrical case has been inves-
tigated previously [1].

For the unperturbed motion we adopt the self-similar solution
p=pole/t, u=rit,

where r is the Euler distance to the z axis, p, and t; are constants, t — +« in expansion, and t — —« in com-
pression.

We assume below that the motion is adiabatic, with adiabatic exponent y > 1. This unperturbed motion
corresponding to cylindrical compression (or expansion) of a gas column with a pressure at the boundary of the
gas that varies according to the power law

p = Ap¥ = py(t,/t).

Quaiitatively, instability sets in because the problem involves two velocities: the velocity of the gas u =r/t,
which depends on the radius, and the velocity of sound, which is constant in space. We represent the perturbed
motion in the form

0 =00 B/ + 0 (r, )], u= (/) [14v(r, ).

We also regard the perturbation as a small quantity and retain only terms linear in w and v in the equations.
If in the equation of continuity and the Euler equation

dplot + div pu = 0, du/dt + (uylu = —(1/p)yp

we transform to Lagrangian coordinates t, R = r/t, we obtain the following expressions for the density and
velocity perturbations:

tov/ot + v = —(c¥R)dw/dR, tdw/dt + (1/R)IR%IGR = 0.
Consolidating these equations, we obtain a single equation for w(R, )
126%/0t2 + 2tow/ot — c{@*w/0R® + (1/R)I0IR} = 0,
the solution of which we expand in a series of Bessel functions: "
(R, )= Zk:(o (k, ) Jo (kR).

The function w(k, t) satisfies the equation

120%w/012 + 2tdw/ot + ke = 0.

Since in this equation c? = 3|t |2¥~1), where c, is a constant, for y = 1 its solution has the form w(k, t) =
It [—1/2 {AT,(x) +BI_,®)}, where v = Y (y ~1); x =[egk/(y — D1t ["(Y"i); and A, B, D are constants.

Ast—+—0
ok, t) - D|t] &/A9=3 cos (z + nv/2 — nl4).

Hence it is clear that in compression, if y < 2, the motion will be unstable. The amplitude of the standing wave
grows in an oscillating manner. For y > 2 the motion will be stable.
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In the isothermal case (y = Lw(k, t) has a power-law dependence on the time:

ok, ) = Ct™ + Cot %,

where ay; = % iWAI - c2kH1/? and ¢y, C, are constants. When a is complex-valued, C; =Cp. In the isother-
mal case the motion is unstable, and the amplitude growth depends on the wavelength.

¥ we express the growth of the perturbations in terms of the relative compression p/ Pg, we have

(Ap/p)/(Ap/p)s < (plp) AR < (0/pg)t/t,
because for real gases 1 =y = 2.
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PROPAGATION OF FINITE-AMPLITUDE PRESSURE PERTURBATIONS
IN A BUBBLING VAPOR — LIQUID MEDIUM

V. E. Nakoryakov, B. G. Pokusaev, UDC 532.593:532.529
N. A. Pribaturin, and I. R. Shreiber

The investigation of the propagation of pressure perturbations in a liquid saturated with vapor bubbles
has produced two different models describing this process. In [1] the wave evolution process is analyzed from
the point of view of a thermodynamic-equilibrium model, in which the characteristic sound velocity is cal-
culated in the form [2]

ey = prpo/(BplTﬂ (cplTo)m),

where p and T are the pressure and temperature of the medium, p is the density, ¢, is the specific heat, r is
the latent heat of phase transition, B is the gas constant, and p is the molecular weight. We use the indices

1 and 2 everywhere to designate the liquid and the vapor respectively, and the index 0 for the unperturbed state.
However, it is inferred from experiments [3-5] that the gas dynamics of a vapor—liquid medium with a bubble
structure must be formulated on the basis of a nonequilibrium approach. A model has been proposed in [6] for
the propagation of pressure disturbances with allowance for the unsteady behavior of the heat and mass trans-
fer at the bubble—liquid phase interface during the transmission of the pressure pulse. As the characteristic
velocity in this model we adopt the "frozen" sound velocity ¢, the value of which can be determined from the
expression

4 _ (1 —@,)° LBt~ %) ey
c2 c? ! TP, ?

in which ¢, is the initial vapor content and v is the adiabatic exponent for the vapor. The experiments re~
ported in [5] show that the model used in [6] for the heat transfer between a vapor bubble and a liquid well de-
scribes the dynamics of bubbles for an arbitrary variation of the external conditions (pressure or temper-
ature). The same experiments also show that the behavior of bubbles in a pressure wave is strongly mirrored
in the structure and evolution of the waves. It was observed earlier [4] that under definite conditions the evolu-
tion of a pressure perturbation in a liquid containing vapor bubbles can be affected not only by interphase heat
and mass transfer, but also by nonlinear and dispersion effects, which are typical of a bubbling gas—liquid me-
divm [7].
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